Dishriet
o o

Research Group

Software Interfaces to
Cryptographic Primitives

Frank Piessens (Frank.Piessens@cs.kuleuven.be
)



mailto:Frank.Piessens@cs.kuleuven.be

Overview

* Introduction

* Cryptographic Primitives
* Cryptographic API's

* Key Management Issues
* Conclusion




Introduction

* Security = prevention and detection of
unauthorized actions on information

* Two important cases:

— An attacker has access to the raw bits representing
the information
=> need for cryptographic techniques

— There is a software layer between the attacker and
the information
=> access control techniques




Introduction

* Cryptography builds on algorithms (primitives)
that guarantee specific information security
related security properties

— E.g. Hash functions, symmetric encryption, ...
— Precisely specifying the security properties of most
primitives is intricate

* To guarantee interesting, more high-level,
security properties, primitives are used in
cryptographic protocols

— E.g. Secure communication, entity authentication, ...




Cryptographic Primitives

* Symmetric cryptography
* Public-key cryptography
* Hash functions

— Unkeyed hash functions
— Message Authentication Codes (MAC's)

* Digital signatures
* Secure random numbers




Symmetric Cryptography

Alice Bob
secret key secret key

D D
plaintext q%qciphertext ‘% qplaintext

* NOTE: Algorithm secrecy — key secrecy




Cryptanalytic Attacks

* Algorithm should be secure against
— Ciphertext-only attack

* Find k or plaintext given only ciphertext.
— Known-plaintext attack
* Find k given M., C,L10U,, C,L]...

— Chosen-plaintext attack
* Known-plaintext, but adversary chooses M,, M,, ...

— Chosen-ciphertext
* Known-plaintext, but adversary chooses C,, C,, ...
* Security depends on:
— Algorithm: use well-known algorithms
— Key-length: longer keys improve security




Block ciphers and stream ciphers

* Block ciphers encrypt fixed-size input blocks

— Padding may be necessary.
* E.g. PKCS#7 padding

— Different modes of operation on arbitrary sized
streams (see next slide)

— Block size influences security of the cipher

* Stream ciphers can encrypt bit-by-bit
— E.g. one-time-pad
— Key stream generators




Encryption modes (block ciphers)

. Electronlc Codebook (ECB)

R

: Clphl\edr Block Chaining (CBC)

Wé 1




Cleartext

DES / ECB

DES / CBC




Real-world Algorithms

DES (Data Encryption Standard)
— Designed by IBM in 1970’s, influenced by NSA
— 64-bit blocks, 56-bit key (too short nowadays)

Triple DES
— Three DES encryptions with independent keys

AES (Advanced Encryption Standard) / Rijndael

— Made in Belgium
— Variable key/block length; standards 128, 192 or 256 bits

RC4
— Proprietary stream cipher of RSA Labs




Public-key Cryptography

Alice , . Bob
Bob’s public key Bob’s private key

qplaintext

* Key generation algorithm

* Should be secure against the same attacks as
symmetric encryption

* Easier key management (see later) but slower




Public-key Cryptography

* Public-key ciphers are all block ciphers
— Block size is much larger than for symmetric ciphers

— Typically only single block encryption to encrypt a
symmetric key

— Padding is more elaborate to deal with small
message space attacks

* Randomization of the plaintext




Real-world Algorithms

RSA (Rivest, Shamir, Adleman)

— Widely used: de facto standard for public-key cryptography
— Variable key length
— Based on problem of factoring large integers

ECC (Elliptic Curve Cryptography)

— For wireless and embedded environments

Others exist but not frequently used
— e.g. Rabin, ElGamal, ...

Padding algorithms
— PKCS#1v1.5
— OAEP




Notational Conventions

* Notation for keys:
— Symmetric key: K, K, D
— A's public key: PK,
— A’s private key: SK,

* Notation for encryption:
— ciphertext = {plaintext}K
— ciphertext = {plaintext}PK




Hash Functions

* Definition
— Maps arbitrary strings on fixed-length hash values
— “Fingerprint” of message
— AKA Message Digest
* Cryptographic hash functions are:
— One way
— Collision resistant

* Two flavours: keyed (MAC'’s) and unkeyed




Unkeyed Hash Functions

‘ ‘ hash value
(fixed length)

message
(any length)

* One way:

— Easy to compute hash value for message
— Hard to find message with specific hash value

* Collision resistant:
— Hard to find second message with same hash value

* Used for detecting unauthorized changes
— e.g. Detection of virus infection




Message Authentication Codes

secret key

message MAC value
(any length) q% (fixed length)

* Properties:
— One way
— Collision resistant
— Protected by secret key:

* Computing and checking impossible without key
* Used for message integrity check




Real-world Algorithms

* Unkeyed hash functions:

— SHA-1 (Secure Hash Algorithm)

* Designed by NSA

* Arbitrary-length input — 160-bit output

* Known attacks -> now considered insecure
— MD-5 (Message Digest)

* By Ron Rivest

* Arbitrary-length input — 128-bit output

* Known attacks -> now considered insecure

— SHA-2 / 256 and SHA-2 / 512




Real-world Algorithms

* MAC's:
— Any symmetric encryption of any hash function
— Using only hash functions: MAC (M) = H(k,M),
or better: H-MAC turns any unkeyed hash in a MAC
— DES-CBC-MAC.: the last block of a CBC encryption




Digital Signatures

Alice o, . : Bob
Alice’s private key Alice’s public key
D

ge%°)

message
q +

signature

message ‘

* Key generation algorithm
* Digital signatures provide:

— Message origin authentication
— Non repudiation




Digital Signatures

* Digital signatures also operate on fixed size
input blocks

— Padding is necessary but has completely different
requirements than padding for encryption

* E.g. no randomization

— To sign arbitrary sized messages
* Sign a hash of the message

* Standardized signature schemes specify how
hashing and padding must be used




Real-world Algorithms

* RSA
— Public key and private key are interchangeable
— Signature = encryption with private key
— Verification = decryption with public key
* DSA (Digital Signature Algorithm)
— Designed by NSA
— Key length from 512 to 1024 bits

* Elliptic curve variant of DSA (ECDSA)




Notational Conventions

* MAC's:
— MAC value = [message|K

* Digital Signatures:
— signature = [message]SK




Secure Random Numbers

* True randomness Is slow to obtain:
— physical processes: noise diode, coin tosses, ...
— timing user interface events

* Solution; Pseudo-Random Generators

— John von Neumann: “Anyone who considers
arithmetical methods of producing random digits is,
of course, in a State of sin”

— generate many (seemingly) random numbers starting
from one seed




Secure Random Numbers

* Importance of random number generation:

— Generating cryptographic keys

— Generating “challenges” in cryptographic protocols
* Cryptographically secure randomness

— Passes all statistical tests of randomness

— Impossible to predict next bit from previous output
bits

* Do not use a built-in random generator that uses
an unknown algorithm!




Conclusions

* Designing cryptographic primitives is extremely
hard

— never try to design your own algorithms, use well-
known algorithms

* Implementing cryptographic primitives is
extremely hard

— whenever possible, use a crypto library or APl from a
reputable vendor




Overview

* Introduction
* Cryptographic Primitives
* Cryptographic API’s

* Key Management Issues
* Conclusion




Cryptographic API's

P+ Design principles of modern API’s:

— Cryptographic Service Providers (CSP’s) and
cryptographic frameworks

* The Java Cryptography Architecture and
Extensions (JCA/JCE)

* The .NET cryptographic library
* Conclusion




Design principles

* Algorithm independence
— Engine classes

* Implementation independence
— Provider based architecture

* Implementation interoperability
— Transparent and opaque data types

Bottom line: security mechanisms should be
easy to change over time




Engine classes

Abstraction for a cryptographic service

— Provide cryptographic operations

— Generate/supply cryptographic material

— Generate objects encapsulating cryptographic keys
* Define the Cryptographic AP

* Bridge pattern or inheritance hierarchy to allow for
implementation independence

* Instances created by factory method




Bridge pattern

| h




Inheritance based decoupling

MessageDigest

update (byte[]input): void

digest() : byte[]
getDigestSize() : int

| |

Md5 SHA1
update byte[] input): void update byte[]input): void
digest|() : byte[] digest() : byte[]
getD gestSze () : it ge gestSkze () : 1t©
etum SHA1 dgestSze
| | |
SHA1 -l p 1 SHAT-hhp D

update by [lhput): vod update byt [Input):vod

dyest() :byte ] dyest) :byte(]

getDygestSze () : nt getDigestSze () : nt




Opaque vs transparent data

* Representation of data items like keys, algorithm
parameters, initialization vectors:

— Opaque: chosen by the implementation object

— Transparent: chosen by the designer of the
cryptographic API

* Transparent data allow for implementation
interoperability

* Opaque data allow for efficiency or hardware
implementation




Crypto frameworks and CSP’s

* A cryptographic framework defines:
— Engine classes (and possibly algorithm classes)
— Transparent key and parameter classes
— Interfaces for opaque keys and parameters

* A cryptographic service provider defines:
— Implementation classes
— Opaque key and parameter classes

— Possibly methods to convert between opaque and
transparent data




Cryptographic API's

* Design principles of modern API's:

— Cryptographic Service Providers (CSP’s) and
cryptographic frameworks

* The Java Cryptography Architecture and
Extensions (JCA/JCE)

* The .NET cryptographic library
* Conclusion




The JCA/JCE

* Java Crypto API structured as a cryptographic
framework with CSP’s

* Splitin:
— The Java Cryptography Architecure (JCA)
— The Java Cryptography Extensions (JCE)

* This split is because of US export-control
regulations for cryptography




US Export Restrictions

* US consider crypto software as munitions
— export controls
— no internal or import controls

* Before January 2000
— Export of strong encryption products (> 40 bits) forbidden

* Download is form of export!
— No restrictions on authentication products

* Since January 2000: relaxed

— Exception License needed for export
* Received after technical review by NSA

— Still forbidden to “Terrorist-7" countries




Engine classes (JCA)

java.security.*

e MessageDigest e CerticateFactory
hash functions generate certificates from
e Signature encoded form
e SecureRandom o KeyStore
e KeyPairGenerator database of keys
generate new key pairs e AlgorithmParameters
o KeyFactory o AlgorithmParameter-

Generator

convert existing keys




Engine classes (JCE)
javax.crypto.*

e Cipher
encryption, decryption

e Mac
o KeyGenerator
generate new symmetric keys

e SecretKeyFactory
convert existing keys

e KeyAgreement




Key Classes

Opaque Representation Transparent Representation
* Nodirect access to key ¢ Access each key material

material value individually

* Encoded in provider- * Provider-independent
specific format format

e java.security.Key e java.security.KeySpec

&
8

{Iﬂ

KeyFactory ’




Parameter Classes

Opaque Representation Transparent Representation

* No direct access to * Access each parameter
parameter fields value individually

* Encoded in provider- ¢ Provider-independent
specific format format

e AlgorithmParameters e AlgorithmParameterSpec




Overall structure of the framework

* Security class encapsulates configuration
information (what providers are installed)

* Per provider, an instance of the provider class
contains provider specific information (e.g. what
algorithms are implemented in what classes)

* Factory method on the engine class interacts
with the Security class and provider objects to
instantiate a correct implementation object




Example: creating ciphers

2: getProvider("IAIK"
1: getInstance("DES/CBC/PKSC5Padding”, "IAIK") /7

3: getProperty("Cipher.DES")

4: CipherSpi( ) <
\
5: engineSetMode("CBC")
v IAIK : Provider
6: engineSetPadding("PKCS5Padding")
v

des : CipherSpi




Additional support and convenience
classes
* Secure streams
— For easy bulk encryption and decryption
* Signed objects
— Integrity checked serialized objects
* Sealed objects
— Confidentiality protected serialized objects
* Working with certificates

* Keystores




Cryptographic API's

* Design principles of modern API's:

— Cryptographic Service Providers (CSP’s) and
cryptographic frameworks

* The Java Cryptography Architecture and
Extensions (JCA/JCE)

* The .NET cryptographic library
* Conclusion




The .NET cryptographic library

* CSP based library that uses inheritance based
decoupling

* Bulk data processing algorithms are all made
available as |ICryptoTransforms

* Essentially 2 methods: TransformBlock() and
TransformFinalBlock()

Input block

| Copetanton]

Output block




|ICryptoTransform and CryptoStream

* |CryptoTransforms can wrap streams
E.g. (in read mode)

Resulting stream




Bulk data engine classes

* SymmetricAlgorithm, with algorithm classes
— TripleDES, DES, Rijndael, ...

* HashAlgorithm, with algorithm classes
- SHA1, MD5, ...

* KeyedHashAlgorithm, with algorithm classes
- HMACSHA1, MACTripleDES, ...




Asymmetric engine classes

* Generic AsymmetricAlgorithm engine class
— RSA and DSA algorithm classes

* Specialized engine classes for typical uses of
asymmetric cryptography, that take care of
padding and formatting

— AsymmetricKeyExchangeFormatter
— AsymmetricSignatureFormatter




Engine classes for key generation

* RandomNumberGenerator
— For generating secure random numbers

* DeriveBytes
— For deriving key material from passwords




Other functionality in the .NET
cryptographic library
* Facilities for interacting with Windows CryptoAP!

— To manage CryptoAPI Key containers manually
— To call extended functionality in CryptoAPI 2.0

* Configuration mechanism

— The factory methods that create engine classes are
driven by a configuration file that can be edited to
change default algorithms and implementations

* On top of the .NET crypto API, an
implementation of XML Digital Signatures is
provided




Conclusion

* Cryptographic mechanisms should be used in
such away that they are easy to evolve

— To deal with implementation errors
— To deal with algorithms being broken

* By structuring a library around CSP’s, this can
be achieved

* Java and .NET both offer a CSP based library
with similar functionalities




Overview

* Introduction

* Cryptographic Primitives
* Cryptographic API's

* Key Management Issues

* Conclusion




Key Management Issues

* Generating keys
* Key length

* Storing keys

* Key establishment
* Key renewal

* Key disposal




Generating Keys

* Algorithm security = key secrecy

* Key should be hard or impossible to guess
— Human password — dictionary attack!
— Better: hash of entire pass-phrase

— Machine-generated — use cryptographically secure
pseudo-random generator




Key Length

* Trade-off: information value — cracking cost
* Symmetric algorithms

— $1 000 000 investment in VLSI-implementation
4 bits 128 bits
1 hour 10 days 10" years

. n _ n

2000 1024 1280 1536
2005 1280 1536 2048
2010 1280 1536 2048




Storing Keys

Simplest: human memory
— Remember key itself
— Key generated from pass-phrase

Use Operating System access control
Key embedded in chip on smart card
Storage in encrypted form

— Key encryption keys — data encryption keys
Limit key lifetime depending on

— Value of the data

— Amount of encrypted data




Key Establishment

* Key agreement = Two parties compute a secret
key together
— E.g. Diffie — Hellman protocol

* Key distribution or transport = One party
generates a key and distributes it in a secure
way to all authorized parties




Key Distribution

* Using symmetric encryption
— Trusted party: Key Distribution Center (KDC)
— General idea ( oversimplified: )




Key Distribution

* Using public-key encryption
— No need for KDC?

lick

+P

— Man-in-the-middle attack!




Man-in-the-middle attack

Public key? Public key?
PK, PK,
M} PK, M} PK,

* How can Alice be sure she got Bob’s public key?
— Solution: Certificates
Public Key Infrastructure (PKI)
— Discussed later




Key renewal

* Best practice:
— Limit the amount of data encrypted with a single key
— Limit the amount of time a key is in use

* Hence:
— Need for mechanisms to renew keys




Key disposal

* Once a key is no longer used, what should
happen?
— Short-term keys:

* Dispose in a secure way

— Long-term keys:
* Encryption:

— Reencrypt old data, or store key securely

* Signing
— Signing key should be disposed of securely
— Verification key should be stored securely




Conclusion

* Good key management is essential to achieve
any security from cryptography
* |nappropriate
— Key generation
— Key storage
— Or key establishment

IS often the cause of security breaches




Overview

* Introduction

* Cryptographic Primitives
* Cryptographic API's

* Key Management Issues
* Conclusion




Conclusion

* Cryptographic primitives offer well-defined but
complex security guarantees
— Precisely saying what security a crypto primitive
offers is non-trivial
* As a consequence, cryptographic primitives are
hard to use correctly

— Mainstream developers should typically not use
them

— Use APl to higher-level protocols instead




